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• Integrating scheduling with energy procurement improves production sustain-
ability

• Production planning can respond to changes of dynamic energy prices and
emissions

• Seasonal differences affect potential savings in energy cost and emissions

• Decision-makers can vary makespan, costs, and emissions based on their pref-
erences

• Pareto fronts enable balancing production efficiency and sustainability
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Abstract

Dynamic energy tariffs in combination with energy storage systems (ESS) and renew-
able energy sources (RES) offer manufacturers new opportunities to optimize their
energy consumption. Flexible production planning empowers decision-makers not
only to minimize makespan, but also to reduce energy costs and emissions. However,
flexible production planning is a major challenge due to the fact that scheduling
decisions affect energy demand, whose costs and emissions depend on energy pro-
curement decisions. In Operations Research, the Green Flexible Job Shop Scheduling
Problem (FJSP) addresses production planning decisions incorporating resource, en-
vironmental, and economic objectives. The Energy Procurement Problem (EPP)
aims to efficiently acquire energy resources. In the literature, existing approaches
for energy-aware scheduling neglect to procure energy from sources such as an un-
certain dynamic energy market, RES, and ESS. We aim to close this research gap
and propose a two-level approach based on a memetic Non-dominated Sorting Ge-
netic Algorithm (NSGA-III) and linear programming with the goal of minimizing the
makespan, energy costs, and emissions of a schedule, incorporating dynamic energy
prices and emissions, RES, and ESS. We evaluate the approach in computational
experiments using FJSP benchmark instances from the literature as part of a rolling
horizon approach with real energy market data. We investigate the impact of RES
and ESS by presenting estimated Pareto fronts, showing potential savings in energy
cost and carbon emissions.
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1. Introduction

The use of renewable energy plays a key role in addressing the increasingly press-
ing issue of climate change. In 2021, renewable sources account for roughly 34% of
the total energy generation in Europe, and this sector is expected to grow further,
promoted by ambitious climate goals, technological progress, and policy incentives
(Elbersen et al., 2012; Hassan et al., 2024). Since renewable energy generation, such
as wind and solar power, is uncertain and volatile, a significant challenge involves bal-
ancing energy supply and demand to increase the use of renewable energy (Warren,
2014). One method to improve the utilization of renewable energy is a flexible align-
ment of energy consumption (Panda et al., 2023). This study investigates demand
response of manufacturers by addressing flexible production planning integrated with
energy procurement decisions considering the following aspects.

First, manufacturers can employ flexible production planning, adjusting their
production to external factors such as current energy prices and emissions and to
their own energy generation, with the goal of minimizing makespan, energy costs,
and emissions. Additionally, energy-intensive processes beyond production, such as
combined heat and power generation or cooling buildings in an industrial context,
can also be integrated into production planning (Mitra et al., 2013; Mancò et al.,
2024; Barco-Burgos et al., 2022). While traditional energy tariffs feature fixed pur-
chase prices, Time-of-Use (TOU) tariffs offer a solution by setting the price based on
the time of day (such as on-peak and off-peak). Real-Time Pricing (RTP) tariffs are
dynamic energy tariffs involving price adjustments at least on an hourly basis, e.g.,
in alignment with the day-ahead market price developments. By scheduling energy-
intensive processes during periods characterized by low energy costs, and vice versa,
manufacturers can benefit from cost savings when improving production flexibility
in combination with implementing RTP tariffs (Körner et al., 2019). Apart from
lowering energy cost, emissions reduction can also be an objective of flexible produc-
tion planning: As an exogenous influence, dynamic price signals are one approach
to incentivize the shift of energy demand to periods of high generation of renewable
energy (Huang et al., 2019; Jordehi, 2019). Endogenously motivated, manufacturers
can direct their focus towards the emissions of the current energy market, schedul-
ing energy-intensive processes based on the energy mix of the market to align with
corporate sustainability goals (Maia et al., 2022).

Second, manufacturers can improve energy procurement to meet their demand,
including their own energy sources and storage systems in addition to grid power.
Incorporating behind-the-meter renewable energy sources (RES) such as solar pan-
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els or wind turbines can amplify the effects of cost and emissions savings, while
targeted control of Energy Storage Systems (ESS) further enhances the flexibility of
energy consumption (Obi et al., 2020; Yasmin et al., 2024). Studies show that large
electricity consumers can significantly reduce their energy costs through strategic
energy procurement decisions (Conejo et al., 2005; Beraldi et al., 2017). Zhang et al.
(2016) and Leo et al. (2021) further demonstrate the benefit of integrating electricity
procurement with production scheduling.

However, manufacturers face several challenges when adopting flexible produc-
tion planning. Production planning decisions must be synchronized with decisions for
energy procurement from RES, ESS, and the grid, especially since different decision-
makers (e.g. production planner and energy procurement manager) are usually in-
volved here. In addition, uncertainties must be considered in both the energy market-
dependent scheduling and the use of RES and ESS. Varying external factors, such as
weather conditions and day-ahead market for the coming day, together with associ-
ated renewable energy generation from wind and solar sources, can affect energy cost
and production emissions. Additionally, when rescheduling production plans due to
changing external factors, past scheduling decisions are irreversible and cannot be
altered.

To align production scheduling and energy procurement with the energy market,
we address (1) the Flexible Job Shop Problem (FJSP) and (2) the Energy Procure-
ment Problem (EPP): (1) Job-shop scheduling problems assign a given set of jobs
with different processing times to a set of machines to minimize the makespan (Zhang
et al., 2019). A job can consist of multiple operations that must be processed se-
quentially. In a flow shop problem (FSP), machines are given as n-tuples and each
job is divided into n operations, such that each machine is specialized for exactly one
operation. In an FJSP, a machine can be specialized for multiple operations such
that an operation can be processed by any machine in a given set. (2) The EPP
focuses on efficient acquisition of energy resources and aims to minimize energy pro-
curement expenses. It incorporates various energy sources, including self-generated
energy from RES and ESS, bilateral contracts such as power purchase agreements,
and spot markets, to determine the optimal energy mix required to meet energy
demands at the lowest possible cost (Beraldi et al., 2017).

As we show in Section 2, several approaches to energy-aware scheduling have been
studied in the literature. However, previous studies focus on specific aspects, result-
ing in limited coverage. To the best of our knowledge, there is no multi-objective
approach that simultaneously addresses the minimization of makespan, energy cost,
and emissions, while considering the uncertainties of a dynamic energy market and
utilizing on-site energy from RES and ESS.
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The objective of this work is to develop and evaluate a multi-objective scheduling
approach that simultaneously minimizes makespan, energy cost, and emissions while
accounting for the uncertainties of a dynamic energy market and utilizing on-site
renewable energy and energy storage systems. We aim to provide decision-makers
with insights into the potential energy cost and emissions savings achievable through
enhanced production flexibility. To assess our approach through computational ex-
periments, we study its performance under various conditions. Our analysis examines
the effects of seasonal differences, the influence of decision-makers on how much they
want to respond to dynamic energy prices and emissions, and the suitability of our
approach and its results for practical use. The primary research questions guiding
our analysis are:

I How do different seasonal conditions affect potential savings in energy cost and
emissions?

II To what extent can decision-makers influence the makespan, energy cost, and
emissions of schedules?

III How feasible are energy costs and emission-based schedules for practice?

Our contribution entails three main components: (1) formulating linear opti-
mization models to solve the FJSP and EPP for the multi-objective minimization
of makespan, dynamic energy cost and emissions; (2) developing a novel Memetic
algorithm inspired by NSGA-III; and (3) conducting comprehensive computational
experiments to analyze reductions in energy cost and emissions.

The remainder of this paper is structured as follows. Section 2 presents related
work to our contribution and highlights the research gap. Section 3 outlines the math-
ematical formulations for the FJSP and the EPP. Section 4 describes the solution
approach to solve the FJSP and EPP. Section 5 presents the details and experimental
setup used for evaluation and discusses the results of our computational experiments.
Sections 6.1 through 6.3 present and discuss the results of our experiments related
to the research questions I through III. Section 7 summarizes our work and gives an
outlook for future research.

2. Related Work

In this section, we introduce the existing literature on energy-aware scheduling.
We categorize recent studies based on their objectives, energy aspects considered, the
type of problem addressed, the developed model, and the solution approach. The
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literature reviewed in Table 1 focuses on scheduling approaches that consider aspects
related to energy and is conceptually sorted according to the objective.

First, we discuss the objective of the related work in Table 1. There are multiple
studies that minimize both makespan and overall energy consumption by adjusting
production speed, scheduling idle times, or turning off machines (Gong et al., 2018,
2021; Yin et al., 2017; Wu and Sun, 2018; Lu et al., 2021; Dai et al., 2019). Li et al.
(2020), Wu et al. (2018), and Fang et al. (2011) incorporate sustainable concepts
in their studies by focusing on emissions rather than energy consumption. Fang
et al. (2011) supplements the minimization of makespan and emissions with the
minimization of peak consumption as a third objective to map and reduce associated
costs. The remaining studies in Table 1 consider the minimization of energy costs
as an objective. Many studies examine the minimization of energy cost as the sole
optimization goal in designing energy-efficient schedules for decision-makers (Ding
et al., 2015; Che et al., 2017; Moon and Park, 2014; Biel et al., 2018; Zhang et al.,
2017; Duarte et al., 2020; Zhang et al., 2015; Lee et al., 2017; Abikarram et al., 2019;
Shrouf et al., 2014; Gong et al., 2015, 2016; Zhai et al., 2017; Fazli Khalaf and Wang,
2018). The objective of minimizing energy costs is also integrated into multi-objective
optimization alongside other goals. Some studies aim to further reduce energy costs
by including considerations for expenses related to peak energy consumption (Cui
et al., 2019; Golpîra et al., 2018). Another common combination of objectives is the
minimization of both makespan and energy costs (Jiang et al., 2019; Wang et al.,
2020a; Masmoudi et al., 2019; Chen et al., 2022; Karimi and Kwon, 2021; Wang
et al., 2020a; Burmeister et al., 2023). Minimizing the makespan and energy cost
yield solutions that not only entail low energy costs but also ensure short production
times. Instead of concentrating on makespan, Zhang et al. (2014) minimize both
energy costs and emissions, ensuring schedules that are cost-effective and sustainable.
Dong and Ye (2022) and Burmeister (2024) adopt a three-criteria approach with the
aim of designing schedules that are efficient in terms of makespan, energy cost, and
emissions, thus combining the aforementioned objectives in one model.

Second, we delve into the energy aspects examined in the research, focusing on
(1) energy tariff, (2) utilization of RES and ESS, and (3) handling of uncertain en-
ergy data. (1) While Jiang et al. (2019) minimize energy costs assuming constant
energy prices, many publications focus on TOU tariffs (Ding et al., 2015; Che et al.,
2017; Biel et al., 2018; Moon and Park, 2014; Zhang et al., 2017; Duarte et al., 2020;
Zhang et al., 2014; Karimi and Kwon, 2021; Wang et al., 2020a,b; Masmoudi et al.,
2019; Chen et al., 2022). They divide a day into different time periods (e.g. off-peak,
mid-peak, and on-peak) with different energy costs. In contrast to studies under the
assumption of constant prices or TOU rates, the remaining studies aiming at mini-
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mizing energy cost opt for RTP rates (Zhang et al., 2015; Shrouf et al., 2014; Gong
et al., 2015, 2016; Zhai et al., 2017; Fazli Khalaf and Wang, 2018; Golpîra et al., 2018;
Schulz et al., 2019; Burmeister et al., 2023; Burmeister, 2024). Compared with TOU
tariffs, RTP tariffs stand out for their finer temporal resolution, dividing a day into,
e.g. hourly segments instead of a few broad periods. RTP prices change dynamically
and do not repeat daily as TOU prices. The increased dynamic provides additional
opportunities to reduce energy costs by redistributing production. However, com-
plexity increases with the length of the planning horizon considered because of the
large number of time steps. (2) With regard to RES sources, Zhai et al. (2017) and
Biel et al. (2018) both assume wind energy generation and formulate their models
to allow the utilization of the energy generated for cost-effective production. Every
other study reviewed that considers RES also introduces ESS (Wu et al., 2018; Cui
et al., 2019; Moon and Park, 2014; Zhang et al., 2017; Duarte et al., 2020; Chen
et al., 2022; Karimi and Kwon, 2021; Wang et al., 2020b; Dong and Ye, 2022; Fa-
zli Khalaf and Wang, 2018; Golpîra et al., 2018). By introducing ESS, renewable
and cost-efficiently generated energy can be stored and utilized for later consump-
tion. (3) With regard to the consideration of uncertainties in the energy data, there
are different approaches in the considered studies. In Table 1, we mark the aspect
of uncertain energy data as partially met in the studies of Cui et al. (2019), Biel
et al. (2018), Duarte et al. (2020), Chen et al. (2022), Wang et al. (2020b), Dong
and Ye (2022), and Golpîra et al. (2018). These studies consider uncertainties with
respect to RES, e.g. changing forecasts of available wind or solar power. However,
they neglect the dynamics of an energy market, which are considered in the work of
Fazli Khalaf and Wang (2018). Here, the authors consider various scenarios involving
RTP energy prices and RES generation, thus addressing the discrepancies between
predicted and actual renewable energy supply.

Third, we discuss the problem types and the classes of models developed. Among
the studies reviewed in Table 1, the authors predominantly consider multistage FSPs
and FJSPs. Studies including time-dependent energy costs more frequently choose
the setting of a single machine problem. This may be due to the fact that a for-
mulation with time-indexed variables is required to represent time-dependent energy
costs, which are less efficient compared to sequence-position or precedence variables.
Gong et al. (2018), Wu and Sun (2018), Wu et al. (2018), Cui et al. (2019), and
Lee et al. (2017) formulate nonlinear models to represent generated emissions, the
interaction of TOU tariffs and peak demand costs, or energy measures in the ob-
jective function. All other studies considered choose linear formulations. Biel et al.
(2018), Duarte et al. (2020), Wang et al. (2020b), Fazli Khalaf and Wang (2018), and
Golpîra et al. (2018) develop stochastic models to deal with uncertainties in future
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energy production. Cui et al. (2019) adopts a rolling horizon approach in which they
update uncertain weather data daily and adjust schedules to changing conditions.

Fourth, we discuss the solution approach of the reviewed literature. Exact solu-
tion methods are used, e.g., in Che et al. (2017), Zhang et al. (2017), or Karimi and
Kwon (2021), which solve a single-stage scheduling problem. Heuristic and meta-
heuristic approaches are predominantly found in the considered studies, which could
be related to the fact that the FJSP belongs to the class of NP-hard problems (Garey
et al., 1976). Jiang et al. (2019) use variable neighborhood search, while Schulz et al.
(2019) use local search. Gong et al. (2018) and Wu and Sun (2018) use an evolu-
tionary algorithm. Memetic metaheuristics are used in Wu et al. (2018), Wang et al.
(2020a) and Burmeister et al. (2023).

The reviewed literature place different emphases in the area of energy-aware
scheduling. We identify the research gap that there is no work yet that guides
manufacturers to develop schedules that consider makespan, energy cost, and low
emissions while while accounting for the uncertain real-time energy market, along
with behind-the-meter RES and ESS. Considering these aspects is important, as the
three objectives might conflict. Furthermore, focusing solely on the grid is insuffi-
cient, as incorporating local resources can substantially impact both energy cost and
sustainability. We intend to extend the research with a novel approach that guides
manufacturers in creating schedules while simultaneously recommending short-term
energy procurement decisions (i.e. day-ahead market, utilization of self-production)
depending on current RES generation, ESS levels, and the RTP energy market.

3. Optimization models

In this section, we present the multi-objective optimization problem. Section 3.1
introduces the formulation of the energy-aware FJSP, accounting for scheduling as-
pects such as job start times and machine allocations. Section 3.2 presents the for-
mulation of the EPP, addressing aspects of energy procurement to meet the energy
demand resulting from the FJSP.

3.1. Energy-aware FJSP formulation
In this section, we present the multi-objective energy-aware FJSP to minimize

makespan, energy cost, and emissions. Table 2 shows the notation of the model. The
model is based on the work of Burmeister (2024) and the general FJSP formulation
of Özgüven et al. (2010).

Set J comprises the jobs to be processed, while the set Oi = {(i, 1), ..., (i, νi)}
subdivides each job i into νi operations that must be processed in sequence. Set
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O =
⋃
i∈J

Oi unites all operations of all jobs. Set M = {1, ..., ξ} contains all available

machines. Parameter τijk specifies the duration for processing an operation (i, j) on
machine k. Set T = {1, ..., θ} contains the time steps. The parameters ηijkt and ζijkt
indicate the energy costs and emissions, respectively, caused by processing operation
(i, j) on machine k when processing is started at time step t.

Table 2: Notation for the energy-aware FJSP model

Notation Description
Sets
J Jobs, i, i′ ∈ J
Oi Operations of job i, (i, j) ∈ Oi, Oi = {(i, 1), ..., (i, νi)}
O Operations, O =

⋃
i∈J

Oi,

M Machines, k ∈M
T Time steps, t ∈ T
Parameters
τijk Processing time of operation (i, j) on machine k
ρijkt Energy demand for processing operation (i, j) on machine k

when starting at time t
ηt Energy cost at time t
ζt Energy emissions at time t
ucmax Upper bound for the maximum makespan
L A large number
Variables
cmax Maximum makespan
psum Sum of all energy cost
esum Sum of all emissions
dt Energy demand at time t
sijk Start time of operation (i, j) on machine k
cijk End time of operation (i, j) on machine k
xijk Binary indicator, 1 iff operation (i, j) is allocated on machine k
yiji′j′k Binary indicator, 1 iff job j, operation j is predecessor of job i′,

operation j′ on machine k
αijkt Binary indicator, 1 iff operation (i, j) starts on machine k at time t
βijkt Binary indicator, 1 iff operation (i, j) runs on machine at time t

Equation (1) defines the three-criteria objective function for minimizing makespan
cmax, energy cost psum, and emissions esum. Equation (2) defines makespan as the
time at which the last operation (i, j) was completed for all machines k. Equation (3)
limits the maximum allowed makespan to parameter ucmax . If the multi-criteria ob-
jective function is weighted and no focus is placed on the makespan, this constraint
helps prevent an unbounded model by avoiding the indefinite postponement of op-
eration start times. Equation (4) ensures the assignment of each operation (i, j) to
exactly one machine k. Equation (5) ensures that if an operation (i, j) is assigned to a
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machine k, its start time sijk and end time cijk are established correctly. Equation (6)
ensures that the operation- and machine-dependent processing time elapses between
the start and end time. Simultaneously, Equation (7) prevents an operation starting
before the previous operation ended. Equivalent to Equations (6) and (7), Equations
(8) and (9) prevent a machine k from concurrently processing distinct operations.
Equation (10) ensures that exactly one variable αijkt indicates the start of operation
(i, j) on machine k for a time t, if and only if variable xijk indicates the operation’s
assignment to this machine. Equations (11) and (12) ensure that the indicator αijkt

is linked to the start time sijk. Equation (13) ensures that the binary variable βijkt

indicates whether operation (i, j) is running on machine k at time t, based on the
values of αijkt within the time span from t− τijk to t. Equation (14) aggregates the
total energy demand in all operations and machines at each time step t.

min (cmax, psum, esum) (1)
s.t. cmax ≥ cijk ∀i, j, k (2)

cmax ≤ ucmax (3)∑
k

xijk = 1 ∀i, j (4)

sijk + cijk ≤ xijkL ∀i, j, k (5)
cijk ≥ sijk + τijk − (1− xijk)L ∀i, j, k (6)∑

k

sijk ≥
∑
k

ci,j−1,k ∀i, j (7)

sijk ≥ ci′j′k − yiji′j′kL ∀i, j, i′, j′, k (8)
si′j′k ≥ cijk − (1− yiji′j′k)L ∀i, j, i′, j′, k (9)

xijk =
∑
t

αijkt ∀i, j, k (10)

sijk − t ≥ −(1− αijkt)L ∀i, j, k, t (11)
sijk − t ≤ (1− αijkt)L ∀i, j, k, t (12)

t∑
t−τijk

αijkt ≤ βijkt ∀i, j, k, t ≥ τijk (13)

dt ≥
∑
ijk

ρijkβijkt ∀t (14)
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cmax, psum, esum, sijk, cijk ∈ R+,

xijk, yiji′j′k, αijkt, βijkt ∈ {0, 1} ∀i, j, i′, j′, k, t (15)

The model is an MILP due to its incorporation of both binary and continu-
ous variables within linear constraints. The size of the model depends upon the
cardinality of the sets of operations O, machines M , and time steps T . The set
of jobs J does not directly impact the size, as the constraints associated with a
job i are related to its operations (i, j) ∈ O. The number of variables is |O|2 ·
|M | + 2 · |O| · |M | · |T | + 3 · |O| · |M | + |T | + 3. The number of constraints is
2 · |O|2 · |M |+ 3 · |O| · |M | · |T |+ 4 · |O| · |M |+ 2 · |O|+ |T |+ 1.

3.2. EPP formulation
In this section, we present the multi-objective EPP for minimizing energy costs

and emissions. Table 3 shows the notation of the model. The sets R and S contain
the available RES and ESS technologies, respectively. The set T contains the time
steps.

Table 3: Notation for the EPP model

Notation Description
Sets
R RES, r ∈ R
S ESS, s ∈ S
T Time steps, t ∈ T
Parameters
dt Energy demand at time t
pgt Energy cost for grid energy at time t
egt Emissions for grid energy at time t
presrt Energy cost for RES r at time t
eresrt Emissions for RES r energy at time t
pessst Energy cost for ESS s at time t
eessst Emissions for ESS s energy at time t
uhrt Energy generation of source r at time t
lλs , u

λ
s Lower and upper bound for the level of ESS s

uγs , uδs Upper bounds for charging and discharging ESS s
ws Relative energy losses for discharging ESS s
Variables
psum Sum of all energy cost
esum Sum of all emissions
gt Grid consumption at time t
hrt Consumption from source r at time t
λst Level of ESS s at time t
γst Energy charged into ESS s at time t
δst Energy discharged from ESS s at time t
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Equation (16) defines the two-criteria objective function to minimize the cost for
purchasing energy from the grid pt (Equation (17)) and emissions et (Equation (18))
for each time step t. Equation (19) ensures an energy balance by accounting for the
energy input from the grid gt, RES generation hrt, and discharging the ESS δst in
relation to the energy demand dt and charging for the ESS for all RES r and ESS
s. The energy demand dt is calculated based on the production schedule resulting
from the model Equation (1)-Equation (15). The energy discharged from the ESS
takes into account losses based on a relative factor ws. Equation (20) states that
the model starts with an empty ESS at time t = 0. For further time steps t > 0,
Equation (21) calculates the respective ESS state-of-charge level λst, which results
from the level of the previous time step λs,t−1 plus charging γst and minus discharging
δst. Equation (22) ensures that the ESS level remains within the specified bounds
lλs and uλ

s . Equations (23) and (24) limit the amount of energy that can be charged
(γst) to or discharged (δst) from the ESS per time step to the upper bounds uγ

s and
uδ
s, respectively. Equation (25) limits the energy sourced from RES to the quantity

generated for each time step t.

min (psum, esum) (16)

s.t. psum ≥
∑
t

(
pgt gt +

∑
r

presrt hrt +
∑
s

pessst δst

)
(17)

esum ≥
∑
t

(
egt gt +

∑
r

eresrt hrt +
∑
s

eessst δst

)
(18)

gt +
∑
r

hrt + ws

∑
s

δst = dt +
∑
s

γst ∀t (19)

λst = 0 ∀s, t = 0 (20)
λs,t−1 + γst − δst = λst ∀s, t > 0 (21)
lλs ≤ λst ≤ uλ

s ∀s, t (22)
γst ≤ uγ

s ∀s, t (23)
δst ≤ uδ

s ∀s, t (24)
hrt ≤ uh

rt ∀r, t (25)
gt, λst, γst, δst, hrt ∈ R+ ∀r, s, t (26)

The model contains only continuous variables in linear constraints and is classified
as an LP. The size of the model depends on the cardinality of the sets of RES R,
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ESS S, and the time steps T . The number of variables is given by 3 · |S| · |T |+ ·|R| ·
|T |+ |T |+ 2. The number of constraints is 4 · |S| · |T |+ ·|R| · |T | · |T |+ 2.

4. Solution Approach

This section describes a novel decoupling strategy to address energy scheduling
and procurement challenges. Our approach reduces the complexity of the two-level
model by separating energy scheduling and procurement decisions. The FJSP is
addressed using a Memetic NSGA-III, while the EPP is solved exactly in a subse-
quent phase with a solver. To manage uncertainties, the method is embedded within
a Rolling Horizon framework, facilitating dynamic and iterative solution updates,
thereby improving its practical applicability and overall effectiveness.

Update
objective function values

Run LP solver

Formulate model
for first front's individuals

Initialize population

Non-dominated and
niching sorting

Apply crossover operators

Apply mutation operators

Apply local
refinement strategy

no

yes

(a)

(b)

(c)

(d)

(e)

Termination?

(f)

Level I - FJSP
Memetic NSGA-III

Level II - EPP
LP solver

(g)

(h)

Figure 1: Flow chart diagram of the two-level algorithm

Figure 1 shows the process of our two-level approach. In the first phase the algo-
rithm (a) initializes a population and (b) sorts it using the non-dominated niching
sorting method proposed by Deb and Jain (2013). Until termination criteria are met,
the algorithm proceeds with (c) crossover and (d) mutation operators. Subsequently,
(e) a local refinement strategy is applied to improve energy cost and emissions while
maintaining the makespan, effectively transforming NSGA-III into a memetic algo-
rithm.

In the second phase, we determine the short-term energy procurement needed
to meet the energy demand generated by the schedule developed in the first phase.
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Because the mathematical formulation of EPP is linear, we opt for an exact solution
and (f) formulate a Linear Programming (LP) model for every individual of the
estimated Pareto front. The models are (g) run on a solver, accounting for the
energy demand of the first phase’s solutions, the current RES generation, ESS levels,
and the day-ahead market. The last step involves (h) retrieving the solutions from
the solver and computing the final energy cost and emissions based on the optimal
procurement decisions. These results are then presented to the decision-maker, who
selects the preferred schedule from among the available choices.

Section 4.1 presents the Memetic NSGA-III, which focuses on optimizing sched-
ules and determining when to utilize energy from the grid and RES, and when to
charge or discharge available ESS. Section 4.2 justifies the use of a rolling horizon
framework to address uncertainty and presents how we embed the two-level approach
in such a framework.

4.1. Memetic NSGA-III
In this subsection, we describe the Memetic NSGA-III. We use the NSGA-III

as a basis for a memetic evolutionary algorithm adapted to the problem, because
it has shown to be successful on problems with three to five objectives (Deb and
Jain, 2013). In the literature, there are also alternatives to NSGA-III, such as θ-
DEA (Yuan et al., 2015), which aims to improve the convergence ability of NSGA-III
in high-dimensional objective spaces, or NTGA2 (Myszkowski and Laszczyk, 2021),
which focuses on diversity promotion by separate treatment of objective dimensions
in combinatorial many-objective problems (i.e., four or more objectives, Ishibuchi
et al. (2008)). Given that the problem considered has only three objectives, we
choose to adhere to NSGA-III.

In addition, Memetic NSGA-III calculates a solution front, allowing decision mak-
ers to choose a solution from a set of solutions according to their individual prefer-
ences. This eliminates the need for scalarization, where the multi-objective problem
is simplified into a single-objective problem, e.g., using methods such as the weighted
sum or weighted Tchebycheff methods, which yield only one solution (Li et al., 2019).

Section 4.1.1 introduces the representation of the problem as a genotype and
phenotype. Section 4.1.2 introduces greedy refinement as a memetic component.

4.1.1. Representation
As an evolutionary algorithm, the Memetic NSGA-III conceptualizes solutions as

individuals within a population that progress across numerous generations. We adopt
a decoder-based approach from Burmeister (2024) to depict solutions as individuals.
A genotype encodes an individual as a chromosome, while a phenotype decodes a
chromosome to an individual.
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Emissions genes

Figure 2: Example genotype for solution encoding (Burmeister, 2024)

Figure 2 shows an example genotype that consists of four chromosomes, each
the length of the number of operations. Sequence genes determine the sequencing
of job operations, dictating their order of execution. Machine genes, on the other
hand, govern the allocation of operations to specific machines. Meanwhile, energy
cost and emission genes define the acceptable thresholds for costs or emissions during
operation execution.

1

2

0 1 4 6 8 10

5

4

3

2

1

M
ac

hi
ne

En
er

gy
 c

os
t (

€)
Em

is
si

on
s (

gC
O

₂e
q)

Time

Job 1

Job 2

Job 3

Energy cost

2 3 5 7 9 Emissions

Figure 3: Representation of the example genotype as a phenotype (Burmeister, 2024)

In Figure 3, the example genotype is depicted as a phenotype. Time intervals
are marked on the x-axis, while machines are delineated on the left y-axis. The
energy cost values, presented as a dashed line, and emissions values, represented as a
dotted line, are indicated on the right y-axis. Energy costs are expressed in e/MWh,
while emissions are quantified in grams of carbon dioxide equivalent (gCO2eq) per
kWh. The first sequence gene indicates that an operation of job 1 is assigned first,
while the associated machine gene specifies assignment to machine 2. Consequently,
the operation (1, 1) is assigned to machine 2 and scheduled at the earliest available
time that meets both the prescribed maximum allowable energy cost and emissions
criteria specified by the respective gene strings.

4.1.2. Greedy refinement
A local refinement strategy extends NSGA-III to a memetic algorithm. We adopt

a greedy refinement strategy from the work of Burmeister (2024) and outline the al-
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gorithm in Algorithm 1. The algorithm adjusts the energy cost and emission genes of
randomly selected individuals to minimize energy costs and emissions while preserv-
ing the same sequence and machine genes as well as the same makespan. To achieve
this, the operations L (including their machine assignment) of a parent are sorted by
their energy consumption in descending order and duplicated into two sets, Lc, for
the children c ∈ {1, 2}. The algorithm then iterates over each operation (i, j) ∈ Lc

and determines the earliest and latest possible start times lcij and ucij based on the
preceding and succeeding operations. The functions GetTimeOfMinCostBetween and
GetTimeOfMinEmissionBetween are employed to ascertain a time scij between lcij
and ucij at which the operation can be scheduled to minimize either energy cost (for
c = 1) or emissions (for c = 2). When all operations are scheduled, the algorithm
is terminated, and both children are added to the population. The local refinement
strategy follows a greedy nature and prioritizes scheduling energy-intensive opera-
tions first, aiming to achieve savings in energy cost and emissions.

Algorithm 1 Pseudocode of the greedy refinement
Require: Operations L (sorted by energy consumption in descending order)

for all Children c ∈ {1, 2} do
Lc ← copy of L
for ι← 0 to |Lc| − 1 do

lcij ← earliest possible start time for (i, j) ∈ Lc

ucij ← latest possible start time for (i, j) ∈ Lc

if c is 1 then
scij ← GetTimeOfMinCostBetween(lcij , ucij)

else
scij ← GetTimeOfMinEmissionBetween(lcij , ucij)

end if
Schedule Lc[ι] at scij

end for
end for

4.2. Rolling Horizon
In this section, we discuss uncertainty aspects and present the rolling horizon

approach. In contrast to alternative methods, such as probabilistic approaches that
require reliable probability distributions or robust techniques that depend on deter-
ministic or set-based uncertainty modeling, the rolling horizon approach dynamically
incorporates updated information from subsequent periods. This is achieved by pe-
riodically decomposing and solving the problem, enabling refined decision-making in
response to evolving data (Bertsimas et al., 2011; Wang et al., 2019; Glomb et al.,
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2022). Glomb et al. (2022) conceptualize the rolling horizon problem as a finite se-
quence of coupled optimization problems {P1, ...PT}, where each problem belongs to
a time t ∈ [T ] := {0, ..., T}. They partition the variables of a problem Pt into three
sets: Start state variables Ξt, interior variables Xt, and end state variables Θt. The
start-state variables of one time period must correspond to the end-state variables of
the previous period to establish a connection between adjacent periods. The objec-
tive function consists only of interior variables that are used solely within a specific
time period. The primary advantage of a rolling horizon approach lies in its ability
to manage uncertainties by continuously updating forecasts and integrating newly
available information at each decision stage, enabling more informed and adaptive
decision-making (Glomb et al., 2022). Although it may lead to suboptimal solutions
due to its reliance on limited planning horizons and sequential decision-making, this
approach can substantially reduce computational time compared to traditional meth-
ods and give good solutions in reasonable computation time (Marquant et al., 2015;
Glomb et al., 2022).

In the context of the FJSP and the EPP, uncertainty stems from exchange-
dependent energy prices and weather- and demand-driven emissions associated with
the energy mix. For the day-ahead market, the prices and associated energy sources
for the initial 24 hours are fixed, while data beyond remain unknown. Given the cycli-
cal announcement of the following day’s values, we adopt a rolling horizon approach,
working with known day-ahead energy costs and emissions, as well as uncertain fore-
casts for the future. This enables us to adjust decisions on a daily basis and finalize
decisions for the upcoming day using newly available information on energy costs
and emissions, as well as updated forecasts.
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Figure 4: Illustration of a rolling horizon

Figure 4 illustrates a rolling horizon process with 10 periods and 7 iterations. In
the first step, decisions are made for the first time period using both known data for
that period and anticipated data for subsequent periods. The decisions are then fixed
as they relate to past events. Iteratively, anticipated values for the next period are
updated, forecasts for future periods are refined, and missing data is supplemented.
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Figure 5: Flow chart diagram of the rolling horizon

Figure 5 illustrates the adaptation of rolling horizon to our two-level algorithm.
The variable h denotes the current horizon considered, while δ represents the duration
of this horizon. As depicted in the activity diagram, the process begins at the
horizon h = 0 in step (1). In step (2), the energy cost and emissions parameters
(ηijkt and ζijkt) are set to the presently known or predicted values. In step (3), the
algorithm performs the schedule and EPP optimization with the given energy cost
and emission values as described in Section 4.1. In step (4), the decision-maker select
their preferred solution S from the computed Pareto front. In step (5), all variables
αijkt within the horizon, spanning from h to h + δ, are fixed before incrementing
the horizon h in step (6). The procedure continues with the initialization of the
subsequent iteration in step (2) until all operations are assigned such that cmax ≤ h.

5. Computational Experiments

In this section, we outline the design of our computational experiments. Sec-
tion 5.1 presents the evaluation instances used. To address the research questions
I to III introduced in Section 1, we consider cases, that we present in Section 5.2.
Section 5.3 introduces the experiment setting.

18



5.1. Instances
For the evaluation of our algorithm, we use the set of benchmarks from Brandi-

marte (1993). The set is shown in Table 4 and contains 15 instances for the FJSP
with jobs and their respective operations, as well as machines, making it suitable for
emulating a production schedule. These benchmark instances allow a consistent and
comparable evaluation of our results, ensuring that the algorithm’s performance can
be assessed under standardized conditions.

Table 4: Benchmark instances by Brandimarte (1993)

Instance Jobs Machines Operations
per job

Operations
in total

Time steps
per operation

Time step
scaling (in min)

mk01 10 6 5-7 55 1-7 60
mk02 10 6 5-7 58 1-7 60
mk03 15 8 10 150 1-20 30
mk04 15 8 3-10 90 1-10 60
mk05 15 4 5-10 106 5-10 30
mk06 10 10 15 150 1-10 60
mk07 20 5 5 100 1-20 60
mk08 20 10 5-10 225 5-20 15
mk09 20 10 10-15 240 5-20 15
mk10 20 15 10-15 240 5-20 30
mk11 30 5 5-8 179 10-30 15
mk12 30 10 5-10 193 10-30 15
mk13 30 10 5-10 231 10-30 15
mk14 30 15 8-12 277 10-30 15
mk15 30 15 8-12 284 10-30 30

To place the cases in a realistic context of dynamic energy costs and emissions, we
assign each operation i ∈ J an increasing energy consumption of 160+ i

|J |600 kW, e.g.,
the first operation of the first job from instance mk01 has a consumption of 160 kW,
while the last operation of the last job consumes 760 kW. To derive processing times
from the generic time steps, we choose an associated duration of 15 to 60 minutes
for each instance in such a way that solutions may yield a makespan of less than 10
days. We choose this scaling with the intention of allowing the algorithm to compute
up to 10 horizons, in order to be able to observe the evolution of solutions over time.

For each instance, we assume that an ESS with a capacity of 1200 kWh is avail-
able for use. The ESS can be charged and discharged at rates of 25 and 30 kW,
respectively, with an assumed storage loss of 5%. We also assume that behind-the-
meter solar panels and wind turbines are available with a maximum generation of
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6000 kWp for solar and 3500 kWp for wind. The values are based on real ESS and
RES.

5.2. Cases
To evaluate instances (cf. Section 5.1) within a realistic context and to address the

research questions I to III posed in Section 1, we design cases for solving the instances.
As a case, we define changing seasonal conditions, encompassing developments in
energy prices and emissions in the energy market, as well as different solar and wind
conditions and the resulting amount of self-generated electricity. Additionally, a case
specifies the decision-making rule that guides how a decision-maker selects a schedule
at the end of a horizon as part of the rolling horizon process. The decision-making rule
is referred to as the decision-maker’s trajectory in the following discussion. Table 5
presents an overview of all case settings.

Table 5: Case settings

Characteristic Value Description

Season
January Jan 04 to 14, 2021 German wholesale energy

price and emissions data
used

March Mar 22 to Apr 01, 2021
May May 03 to 13, 2021

Trajectory
MS min makespan The assumed preference of

the decision-maker to select
a solution for the next
decision horizon

EC min energy cost
EM min emissions
TO best trade-off

To assume cases with realistic characteristics of the energy market, we select
three 10-day intervals from January, March, and May 2021, using authentic data
sourced from the Federal Network Agency Germany (2024). The January period
characterizes a cold and dark season, while May represents its warm and sunny
counterpart. The March period falls in between, forming a moderate season. To
represent realistic characteristics of on-site solar and wind energy generation data,
we scale the energy market values for solar and wind generation to the assumed
kWp for behind-the-meter RES. Figure 6a illustrates energy prices for the March
season, Figure 6b shows the emissions, and Figure 6c shows the RES generation.
The x-axes reflect the respective date and time, with the y-axes displaying costs in
e/MWh, emissions in grams of carbon dioxide equivalent (gCO2eq) per kWh, and
kW generated, respectively. The solid lines represent actual past values, while the
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dashed lines depict the predicted values assumed at the beginning of each day for the
decision horizons. This implies that for the initial decision horizon, the algorithm
has access to data up to March 22 and uses forecasts starting March 23. In the
subsequent horizon, data for March 22 and 23 are available, and the forecast from
March 24 onwards is utilized, and this pattern continues. Appendix A presents the
January and May period and further details about calculation of forecasts.

Our algorithm generates an estimated Pareto front of non-dominated schedules
and associated procurement plans, allowing the decision-maker to select a suitable
solution based on individual preferences a posteriori. The selected solution serves as
the starting point for the subsequent decision horizon in the rolling horizon frame-
work. Given that schedules span multiple days in each experiment, it is necessary
to define distinct trajectories to simulate various decision-makers at the end of a
planning horizon. To account for diverse decision-making styles, we consider four
different trajectories, including three extreme cases: a first decision-maker prior-
itizing minimum makespan (MS), a second one prioritizing minimum energy cost
(EC), and a third one prioritizing minimum emissions (EM). Additionally, we define
a fourth decision-maker that prefers a trade-off (TO) trajectory, where the objective
function values for the three objectives are normalized, and the solution closest to
the utopian point (0, 0, 0) is selected. Regarding energy procurement, for the MS,
EC, and TO trajectories, energy cost minimization is assumed for the EPP; for the
EM trajectory, emission minimization is assumed.

21



Mar 22
2021

Mar 23 Mar 24 Mar 25 Mar 26 Mar 27 Mar 28 Mar 29 Mar 30 Mar 31

−40
−20

0
20
40
60
80

100

Energy Cost Predictions Energy CostDate

€/
M

W
h

(a) Energy cost

Mar 22
2021

Mar 23 Mar 24 Mar 25 Mar 26 Mar 27 Mar 28 Mar 29 Mar 30 Mar 31
100
150
200
250
300
350
400

Emissions Predictions EmissionsDate

gC
O

₂e
q/

kW
h

(b) Emissions

Mar 22
2021

Mar 23 Mar 24 Mar 25 Mar 26 Mar 27 Mar 28 Mar 29 Mar 30 Mar 31
0

1000
2000
3000
4000
5000

Solar Predictions Wind Predictions On-site Solar Power On-site Wind Power
Date

kW

(c) Solar and wind generation

Figure 6: Energy data and predictions for March season

5.3. Experimental Setting
For computational experiments, Memetic NSGA-III is implemented in C# 12.0

within the .NET 8 software framework. For exact solving of the EPP, we use the
Gurobi 11.0.0 solver with a relative MIP optimality gap of 0.0001. For the Memetic
NSGA-III, we adopt the parameterization of Burmeister et al. (2023), with detailed
explanations provided in the referenced study. The problem is solved on a Red Hat
Enterprise Linux 8.6 (Oopta) operating system with an Intel Xeon Gold 6148 CPU,
20x2.4 GHz, 80 GByte main memory and a run-time limitation of 30 minutes per
run.
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6. Results

In this section, we investigate the results for each of the research questions I-
III as stated in Section 1. Section 6.1 examines the effects of seasonal differences.
Section 6.2 explores the effects of different trajectories. Section 6.3 assesses the
practicality of the schedules resulting from our approach. Given that the Memetic
NSGA-III incorporates random values, we perform ten repetitions to solve each in-
stance. Unless otherwise specified, average values for each of the ten repetitions are
presented in Sections 6.1 to 6.3.

6.1. Effects of seasonal differences
In this section, we refer to the research question I and evaluate the effects of

different seasonal differences on the values of the objective function. The results
presented in this section are computed under the assumption that the decision-maker
follows a trade-off trajectory. To determine the impact of different seasons, Figures
7a to 7c show scatter plots for the three objective function values makespan, energy
cost, and emissions. The x-axis represents the 15 instances, while the y-axis indicates
the corresponding objective function values. Each marker represents the objective
function value that can be achieved based on the day-ahead market conditions and
the associated generation of renewable energy from wind and solar sources for the
months of January, March and May 2021. See Appendix B for detailed results for
all instances.

Figure 7a shows the average makespan values in different instances from 10 runs
categorized by season. The lowest makespan values are achieved in the May season
for 14 out of 15 instances, with the remaining instance (mk02) showing the lowest
makespan in March. For instances with fewer than 20 jobs (mk01-mk06), the differ-
ences in the makespan range from 6.44% (2.8 time steps, mk02) to 21.5% (15.3 time
steps, mk01) with a median of 13.13% (19.8 time steps). In contrast, in instances
with at least 20 jobs (mk07-mk15), the makespan differs by 7.21% (33.9 time steps,
mk15) to 22.93% (89.2 time steps, mk10) with a median of 13.11% (86.5 time steps).
The lowest standard deviation across the 10 different runs is observed for instance
mk02 during the May season, measuring 3.27 time steps. In contrast, the highest
deviation occurs for instance mk09 in the January season, reaching 52.08 time steps.

Figure 7b shows the average energy costs in different instances categorized by sea-
son. For all instances, the algorithm can find the schedules with the lowest energy
costs for the May season. For instances with fewer than 20 jobs, 67.32% (e1073.77,
mk02) to 92.04% (e4763.91, mk06) of the energy cost are saved in the May sea-
son compared to the season with the highest energy cost, with a median of 86.89%
(e4058.31). For instances with at least 20 jobs, the savings in energy cost amount
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Figure 7: Objective function values subject to seasonal conditions

to between 46.68% (e19397.89, mk15) and 89.28% (e7992.56, mk07) with a median
of 77.21% (e11258.51). The lowest standard deviation across the 10 different runs is
observed for instance mk02 during the March season, measuring e94.53. In contrast,
the highest deviation occurs for instance mk15 in the May season, reaching e1622.03.
Figure 7c shows the average emissions across different instances categorized by sea-
son. The results are similar to those for energy costs, with savings of up to 72.80%
(42.92 t, mk09) in percentage terms and up to 115.99 t (49.25%, mk15) CO2eq in ab-
solute terms. The lowest standard deviation across the 10 different runs is observed
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for instance mk01 during the May season, measuring 0.32 t CO2eq. In contrast, the
highest deviation occurs for instance mk10 in the January season, reaching 7.02 t
CO2eq.

With regard to the research question I – how seasonal conditions affect scheduling
and energy procurement – the results show that seasonal differences significantly im-
pact the final energy cost and emissions of schedules. This can be attributed to the
significantly higher availability of solar and wind energy during the spring and sum-
mer seasons compared to January. Although from an intuitive perspective, energy
generation should not directly impact the makespan, it is reduced as a result of the
decision-maker’s trajectory selection for the experiments. When following a trade-off
trajectory in the spring and summer seasons, lower energy prices and fewer emissions
combined with a higher amount of energy generated by RES lead to lower energy
costs and emissions. As a result, the Pareto fronts identified in our experiments
demonstrate lower maximum energy costs and emissions, and consequently, their
knee point also reflects a decreased makespan. The findings in this section quantify
these differences and highlight their impact on overall energy costs, supporting the
results of other studies that emphasize that considering renewable energy availabil-
ity in production scheduling has a significant impact on energy cost and emissions
savings (Fazli Khalaf and Wang, 2018; Dong and Ye, 2022).

6.2. Effects of decision trajectories
In this section, we refer to the research question II and analyze how different

trajectories influence the characteristics of schedules. The results presented in this
subsection are computed given the day-ahead market conditions of the March sea-
son. Since we have introduced the trajectories to mimic decision-makers’ choices
for schedules for the end of each horizon, we investigate the progression of objective
function values over multiple horizons of the rolling-horizon approach. To provide
a detailed view, we focus on two selected instances, which represent a medium and
large size instance with 20 and 30 jobs, respectively. Appendix C provides a complete
presentation of all diagrams and detailed results for all instances.

Figures 8 and 9 show the progression of objective function values retrospectively
over several horizons of the rolling-horizon approach for instances mk10 and mk14.
Since we chose a horizon length of one day, horizon 0 reflects the anticipated objective
function value for scheduling all jobs and all days at the end of the first day, while
the final objective function values are shown at each curve’s endpoint. If a line ends
before the last horizon, all operations have been processed and the procedure has
terminated. The color of a line represents the decision-makers’ trajectory: black lines
represent an MS trajectory, purple lines depict an EC trajectory, green lines depict
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Figure 8: Objective values of instance mk10 for different trajectories over multiple horizons

an EM trajectory, and yellow lines depict an TO trajectory.
Figure 8 shows the objective function values for instance mk10 for 10 runs. The

average makespan values range between 245.5 time steps when following the MS tra-
jectory and 345.7, 445.1, and 449.2 time steps when following the TO, EC, and EM
trajectory, respectively. The standard deviations for makespan measure 5.06, 16.99,
14.81, and 16.00 time steps, respectively. As the Memetic NSGA-III algorithm is
provided with additional opportunities to refine the schedule with each horizon, the
average makespan of the runs with MS trajectory decreases from an initial 259 time
steps after horizon 0 to a final 245.5 time steps after horizon 5. The findings on
energy costs demonstrate that the EC trajectory yields the lowest costs, averaging
e5417.41, which are 43.91% less than those of the TO trajectories (e9658.75). The
standard deviations for energy cost measure e931.14 for EC trajectory and e1462.28
for TO trajectory. In terms of emissions, the EM trajectory results in the lowest emis-
sions (37.42 tCO2eq), a 20.24% deviation from the EC trajectory emissions (46.92 t)
and a 40.88% deviation from the TO trajectory emissions (74.97 t). The standard
deviations for emissions are 3.31 t for EM trajectory and 6.35 t 2eq for TO trajectory.
Opting out of the MS trajectory could potentially lead to savings of up to 60.60% in
energy costs when following the EC trajectory and up to 51.73% in emissions when
following the EM trajectory. Both cases would be accompanied by an increase in
makespan of 66.67%.

Figure 9 shows the results for instance mk14. The MS trajectory achieves a
makespan of 694.00 time steps, while the TO, EC and EM trajectories require 796.0,
921.7, and 930.9 time steps, respectively. The standard deviations for makespan
measure 0, 20.13, 10.68, and 15.25 time steps, respectively. The EC trajectory
incurs energy costs of e6514.26, while the TO, EM, and MS trajectories result in
costs of e10502.53, e8291.06, and e10075.37, respectively. The standard deviations
for energy costs are e672.59, e678.49, e704.16, and e318.52, respectively. In terms
of emissions, the EM trajectory emits an average of 52.10 tCO2eq, while the TO, EC,
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Figure 9: Objective values of instance mk14 for different trajectories over multiple horizons

and MS trajectories emit 75.19 t, 61.40 t, and 76.91 t, respectively. The standard
deviations for emissions are 2.21 t, 2.13 t, 1.70 t, and 1.39 t CO2eq, respectively.
Opting out of the MS trajectory could potentially lead to savings of up to 33.94% in
energy costs and up to 32.26% in emissions.

With regard to the research question II – in what ways decision-makers can influ-
ence the outcomes through different trajectories – the results show that trajectories
applied during the rolling horizon approach have a significant impact on the final
schedule. This can be explained by the fact that schedules are fixed by previous
decision horizons during their iterative calculation in the rolling horizon framework.
For example, if a decision-maker accepts high energy costs and emissions in the first
decision horizon in favor of a low makespan, these are irreversible in subsequent
decision horizons. When following an MS trajectory, the makespan of schedules re-
mains stable across various decision horizons or may even decrease further, as the
algorithm has additional computing time to explore the solution space with each suc-
cessive horizon. When following an EC or EM trajectory, energy cost and emissions
exhibit more dynamic behavior across the horizons. Due to uncertainties regarding
the energy market and the generation of RES behind the meter, the algorithm up-
dates forecasted energy prices and emissions over time and eventually replace them
with the final actual values.

6.3. Practicality of schedules
In this section, we discuss the research question III and evaluate the practical-

ity of the generated schedules. Given that the algorithm generates an estimated
Pareto front comprising various schedules for each instance and case characteristic,
we focus on selected examples of instance mk10. We select instance mk10 due to
its characteristics as a medium-size instance with 20 distinct jobs, which provides
a substantial energy demand. This allows us to observe how jobs and operations
are assigned by Memetic NSGA-III based on the energy market conditions, consid-
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ering the selected trajectory, and the interaction between ESS and RES facilitated
by energy procurement decisions.
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Figure 10: Gantt chart and energy procurement for mk10, makespan trajectory

Figures 10a to 12a show Gantt charts of instance mk10, corresponding to the
MS, EC and TO trajectories, respectively. The x-axes represent the date, while the
left y-axes display the machine assignments through horizontal bars, indicating the
processing of operation. The right y-axes show the energy cost in e/MWh (dashed
line) and the emissions in gCO2eq/kWh (solid line). The depiction of market data
aims to facilitate the understanding of periods that retroactively are favorable in
terms of energy costs and emissions. Figures 10b and 11b show energy procurement
decisions. Similarly to the Gantt charts, the x-axes show the date. The y-axes depict
storage levels, self-generated solar and wind energy utilization, and grid-purchased
energy in kW.

In Figure 10a, the schedule is generated with an MS trajectory and has a makespan
of 237 time steps (4.9 days) with e14436.28 energy cost and 80.69 tCO2eq emissions.
The Gantt chart illustrates that the algorithm schedules all operations as early as
possible to minimize the makespan, without considering energy costs or emissions.
The corresponding energy procurement in Figure 10b shows a significant utilization
of self-generated wind and solar energy to meet energy requirements. The level of
the ESS indicates strategic charging during favorable times and discharging during
periods of unfavorable market prices, thus minimizing the consumption of the grid
to fulfill energy needs.
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Figure 11: Gantt chart and energy procurement for mk10, energy cost trajectory

In Figure 11a, the schedule is generated with an EC trajectory and has a makespan
of 416 time steps (8.67 days) with e3963.61 energy cost and 42.38 tCO2eq emissions.
Compared to the MS trajectory, this is an increase in makespan of 43.03% while
reducing energy costs by 72.54% and emissions by 47.48%. The solution of EC tra-
jectory allows for more idle times between operations, such as during the period from
March 22 to March 26: The energy demand is met by RES generation when energy
prices are high (e.g., during the daytime on March 23), and production halts when
no own energy is produced (e.g., on the evening of March 23). In contrast, favor-
able times with low energy prices and high RES generation, such as those beginning
March 22 at midnight and March 22 at noon, witness most machines in operation and
energy drawn from the grid. Figure 11b illustrates that during these times, the algo-
rithm maximizes the load on the grid, serves the most energy-intensive operations,
and charges the energy storage system. Following these peak periods, production
relies on the utilization of temporarily stored RES energy and self-generated ESS
energy to meet its energy requirements.

Figure 12a shows a schedule based on the TO trajectory with a makespan of 317
(6.6 days) with e11138.75 energy cost and 69.58 tCO2eq emissions. Compared to
the MS trajectory, this is an increase in makespan of 25.24% while reducing energy
costs by 22.84% and emissions by 13.77%. The schedule allows for faster completion
compared to the EC trajectory, while introducing more idle times during periods
of expensive energy prices and high emissions. This approach helps to reduce both
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Figure 12: Gantt chart and energy procurement for mk10, trade-off trajectory

energy costs and emissions while decreasing the impact on the makespan. Figure 12b
shows that energy procurement consistently chooses the most favorable energy mix,
irrespective of the trajectory, thereby ensuring both low costs and low emissions in
energy procurement.

With regard to the research question III – how feasible schedules based on energy
cost and emissions are for practice – the two-level approach generates schedules that
can be implemented in reality. We come to this conclusion, since the experiments re-
flect all possible extreme preferences of decision-makers (MS, EC, and EM trajectory)
and show that feasible schedules can be designed for all cases. Accordingly, schedules
can also be generated for all combinations of weightings, as the TO trajectory shows
as an example for a decision-maker with balanced preferences. Given the variability
across applications, a decision-maker benefits from the estimated Pareto front, which
offers a range of possible schedules and allows for more nuanced considerations.

Beyond the mere feasibility of the calculated schedules, their acceptance in prac-
tical applications is also a crucial aspect to consider. The results indicate that as
the makespan increases, additional idle time is introduced between the processing
of operations, which, in turn, results in periods of worker inactivity. In practical
applications, the acceptance of idle periods largely depends on the specific context of
production planning. In some cases, these periods could be repurposed for activities
such as maintenance or by reallocating workers to other tasks, ensuring that machine
downtime aimed at reducing energy costs and emissions does not necessarily trans-
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late into a complete production halt. However, if such redeployment strategies are
not feasible or effective, decision-makers may prefer to avoid schedules with excessive
interruptions, as this could lead to significantly reduced utilization rates. In such
scenarios, while decision-makers can still leverage insights from the estimated Pareto
front, they are likely to prioritize solutions with minimal makespan to maintain op-
erational efficiency.

7. Conclusion

In this section, we summarize our contribution and its limitations and provide
an outlook for future research avenues. Our research addresses the challenge faced
by manufacturers in flexibly adapting their production schedules to fluctuations in
energy prices and emissions while making energy procurement decisions. Our frame-
work incorporates RTP tariffs to accommodate dynamic changes in energy prices
and emissions, while also considering behind-the-meter RES and ESS assets. To
aid decision-makers, we design a multi-objective NSGA-III algorithm to design pro-
duction schedules, while we solve an EPP exactly using a state-of-the-art solver to
guide energy procurement decisions. Through computational experiments, we ex-
plore (I) the sensitivity of our approach to seasonal variations, (II) the effects of
different decision-makers’ trajectories over time, and (III) the practicality of sched-
ules based on minimizing energy costs or emissions. Based on our findings, we provide
insights that empower manufacturers to estimate potential savings in flexible pro-
duction based on energy price and emission values, and to devise more sustainable
production schedules.

We see several possibilities for future research. A first line of research can expand
the scope of research to incorporate additional requirements from manufacturers. For
our computational experiments, we consider the requirements outlined by Brandi-
marte (1993) and extend the model to include constraints that reflect the dynamics
of the energy market, RES generation, and ESS control. However, extending this
work to real-world instances remains an important direction for future research. The
literature contains additional constraints across various domains, such as time win-
dows such as release and due dates (Tadumadze et al., 2020), sequence-dependent
setup times and machine operator qualifications (Kress et al., 2019), or factors such
as machine maintenance (Geurtsen et al., 2023). Therefore, we recommend creating
more complex and diverse industrial scenarios through collaboration with industry.
Subsequently, a case study can facilitate the application of the model to real-world
decision-making scenarios, using empirical data to derive insights into energy-aware
scheduling and procurement.
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A second line of research can explore the interplay between our methodology
and forecasted data. Although we use various forecasts for three distinct seasons,
the impact of the quality of the forecasts on the results remains unknown. Fur-
ther investigation could contrast the results assuming perfect knowledge with those
derived from various accurate forecasts, measuring their effectiveness using metrics
such as mean absolute percentage error (MAPE) or mean absolute deviation (MAD)
(Wawale et al., 2022). In addition, Absi and van den Heuvel (2019) for example,
conducted a worst-case analysis for decisions in the context of a lot-sizing problem
and investigated how fixing decisions with a moving time window affects the solu-
tion quality. Further investigations could explore the impact of variable fixations
after decision horizons and analyze how the accuracy of forecasts – whether overly
pessimistic or optimistic – affects the outcomes.

32



Declarations

Funding
The authors appreciate the financial support provided by the state of North

Rhine-Westphalia, Germany, as part of the progres.nrw program area, in the frame-
work of Re2Pli (project number EFO 0127A) and the funding of this project by
computing time provided by the Paderborn Center for Parallel Computing (PC2).

Competing interests
The authors declare that they have no known competing financial interests or

personal relationships that could have appeared to influence the work reported in
this paper.

Availability of data
The data that support the findings of this study are available from the corre-

sponding author upon request.

Appendix A. Cases and forecasts

In this section, we complement the season introduction of Section 5.2, present the
energy data for January and May 2021 in Appendix Appendix A.1 and give further
information on forecast generation in Appendix Appendix A.2.

Appendix A.1. Cases
To accommodate fluctuations in renewable production and different energy price

situations on the energy market, we employ data sourced from the Federal Network
Agency Germany (2024) The datasets cover the period from October 1, 2018, to
December 31, 2021, on an hourly basis and include day-ahead prices from the German
wholesale market and actual net electricity generation data categorized by energy
source. Figures A.13a and A.13b illustrate energy prices, while Figures A.14a and
A.14b represent emissions for the January and May season. Figures A.15a and A.15b
show the amount of energy generated by RES. The x-axes reflect the respective date
and time, with the y-axes displaying costs in e/MWh, emissions in grams of carbon
dioxide equivalent (gCO2eq) per kWh, and kW generated by RES, respectively. The
solid lines represent actual past values, while dashed lines depict the predicted values
assumed at the beginning of each day for the decision horizons.

In January, energy costs fluctuate between e15.82 and e110.45, averaging at
e110.45. Emissions vary from 129.38 gCO2eq to 391.04 gCO2eq, with an average
of 285.35 gCO2eq. RES production ranges from 0 kW to 1030.28 kW for solar and
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Figure A.13: Energy cost and predictions

127.86 kW to 2855.55 kW for wind, with mean values of 94.14 kW and 1009.05 kW,
respectively. During the January season, RES generate a total of 264.77 MWh.

In March, energy costs span from -e49.99 to e96.80, averaging at e48.83. Emis-
sions range between 104.54 gCO2eq and 411.32 gCO2eq, with an average of 245.41 gCO2eq.
RES production varies from 0 kW to 5430.48 kW for solar and 19.85 kW to 2758.63 kW
for wind, with mean values of 1218.50 kW and 838.65 kW, respectively. During the
March season, RES generate a total of 493.71 MWh.

In May, energy costs vary between -e66.18 and e101.50, averaging at e51.39.
Emissions range from 85.04 gCO2eq to 427.98 gCO2eq, with an average of 204.73 gCO2eq.
RES production spans from 0 kW to 5589.08 kW for solar and 266.78 kW to 3367.66 kW
for wind, with mean values of 1260.99 kW and 1293.55 kW, respectively. During the
May season, RES generate a total of 613.09 MWh.
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Figure A.14: Emissions and predictions
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Figure A.15: Solar and wind generation and predictions
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Appendix A.2. Forecast generation
The rolling-horizon approach requires uncertain energy prices, emissions, and

RES generation for future time horizons, which are updated at the beginning of each
horizon. We generate forecasts of future price, emissions, and RES generation trends
for 10 consecutive days each from January, March, and May in 2021, utilizing the
LEAR model of the epftoolbox (Lago et al., 2021). Since we do not use exogenous
data, the LEAR model generates naive forecasts based on historical data patterns.
As part of our analysis, we do not aim to use accurate forecasts but rather to draw
patterns that we update on a daily basis and eventually assume known day-ahead
prices. Thus, the rolling horizon approach can adjust to the disparities between the
expected forecasts and the actual developments in energy cost, emissions, and RES
generation. For practical implementation of our approach, we suggest incorporating
relevant exogenous data to improve prediction accuracy when employing regression
analysis techniques, such as the LEAR model. Alternatively, probabilistic price
forecasting methods, as demonstrated by Andrade et al. (2017) or Bello et al. (2016),
can also be considered.

Appendix B. Result table for seasonal differences

In this section, we present the results of our experiments in addition to the results
presented in Section 6.1. With respect to Section 6.1, Table B.6 shows the minimum,
average, and maximum values of the objective function for the makespan, energy
cost, and emissions. The table breaks down the results according to the data for the
season considered (January, March, or May).
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Table B.6: Results for different seasonal conditions

Instance January March May
Min Avg Max Min Avg Max Min Avg Max

Makespan (time steps)
mk01 57.00 72.00 83.00 57.00 63.60 69.00 48.00 56.70 69.00
mk02 33.00 43.50 53.00 34.00 40.70 48.00 38.00 41.50 48.00
mk03 250.00 276.50 312.00 234.00 251.90 273.00 211.00 236.70 263.00
mk04 91.00 101.90 109.00 85.00 96.70 108.00 80.00 89.80 107.00
mk05 218.00 248.20 272.00 203.00 220.80 241.00 209.00 218.90 236.00
mk06 103.00 125.80 151.00 108.00 121.60 135.00 81.00 101.50 124.00
mk07 216.00 224.20 235.00 191.00 206.70 229.00 165.00 192.40 214.00
mk08 620.00 647.80 720.00 577.00 604.40 647.00 560.00 577.80 595.00
mk09 363.00 454.10 527.00 357.00 392.00 431.00 339.00 364.30 440.00
mk10 355.00 389.00 439.00 317.00 345.70 366.00 282.00 299.80 327.00
mk11 676.00 762.00 814.00 695.00 715.10 745.00 685.00 696.00 713.00
mk12 646.00 689.80 743.00 615.00 658.50 715.00 573.00 599.40 637.00
mk13 591.00 622.40 658.00 547.00 591.80 638.00 470.00 515.60 594.00
mk14 794.00 861.60 937.00 758.00 796.00 822.00 718.00 775.10 828.00
mk15 461.00 470.20 478.00 420.00 451.20 476.00 416.00 436.30 470.00
Energy cost (te)
mk01 1.26 1.47 1.85 1.07 1.45 1.65 0.08 0.21 0.34
mk02 1.40 1.60 1.78 1.34 1.50 1.68 0.27 0.52 0.66
mk03 6.85 7.52 9.05 4.42 5.12 5.77 0.61 0.93 1.39
mk04 3.99 4.55 5.14 3.07 3.87 4.53 0.28 0.62 0.88
mk05 4.46 4.79 5.17 2.94 3.39 3.59 0.32 0.61 0.93
mk06 4.26 5.18 6.62 2.88 3.92 4.76 -0.17 0.41 1.20
mk07 7.51 8.95 10.50 2.63 3.42 4.10 0.31 0.96 1.63
mk08 11.01 11.67 12.51 5.49 6.14 6.86 1.68 2.28 3.06
mk09 9.60 9.96 10.56 6.60 7.51 7.90 1.13 1.41 2.03
mk10 16.23 17.61 21.28 7.02 9.66 12.41 3.01 5.44 6.43
mk11 10.27 12.40 14.59 4.30 5.06 5.85 0.99 1.91 2.37
mk12 12.84 14.81 15.73 5.67 7.49 9.13 2.59 3.55 4.40
mk13 17.81 18.79 19.75 8.45 10.78 12.21 4.73 5.32 6.34
mk14 18.57 20.57 22.28 9.00 10.50 11.54 3.18 4.69 6.65
mk15 39.14 41.56 44.09 24.38 25.37 26.94 19.44 22.16 25.09
Emissions (tCO2eq)
mk01 8.41 9.36 11.42 7.94 9.79 11.03 2.72 3.19 3.65
mk02 9.21 10.01 10.76 8.63 9.47 10.29 3.29 4.29 4.76
mk03 43.09 46.16 54.13 29.54 32.56 35.96 11.85 13.07 15.30
mk04 26.50 28.50 30.26 20.48 24.33 27.42 7.29 8.43 9.88
mk05 27.79 29.02 29.95 19.58 21.80 22.94 7.06 8.29 9.18
mk06 27.88 32.51 39.44 19.35 25.35 29.98 7.01 9.47 12.55
mk07 46.90 55.60 62.82 27.25 30.20 32.47 16.04 18.21 20.30
mk08 64.61 68.40 70.76 35.89 40.05 43.44 16.39 18.97 21.43
mk09 56.60 58.95 61.61 41.58 45.64 47.64 14.99 16.04 18.71
mk10 99.48 106.64 121.43 51.79 63.30 74.97 31.44 35.90 39.14
mk11 63.82 72.58 81.33 35.77 38.12 41.48 19.36 21.68 22.89
mk12 81.09 86.57 90.03 41.62 49.37 56.72 23.26 26.99 30.23
mk13 106.35 109.49 113.15 55.39 65.64 72.58 32.30 34.85 38.99
mk14 113.55 124.13 133.09 69.04 72.74 75.19 38.73 43.02 49.12
mk15 222.31 235.49 244.71 147.94 154.78 164.17 113.01 119.50 125.96
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Appendix C. Results for decision trajectories

In this section, we complement the results presented in Section 6.2 and show
results on the average objective function values of all horizons for all instances. The
line charts show the progression of objective function values over several horizons of
the rolling horizon approach. Since we chose a horizon length of one day, horizon 0
reflects the anticipated objective function values at the end of the first day, while the
final objective function values are shown at each curve’s endpoint. The color of a
line represents the decision-makers’ trajectory: black lines depict an MS trajectory,
purple lines depict an EC trajectory, green lines depict an EM trajectory, and yellow
lines depict an TO trajectory.
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Figure C.16: Objective function values of mk01 for different trajectories over multiple horizons
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Figure C.17: Objective function values of mk02 for different trajectories over multiple horizons
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Figure C.18: Objective function values of mk03 for different trajectories over multiple horizons
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Figure C.19: Objective function values of mk04 for different trajectories over multiple horizons
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Figure C.20: Objective function values of mk05 for different trajectories over multiple horizons
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Figure C.21: Objective function values of mk06 for different trajectories over multiple horizons
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Figure C.22: Objective function values of mk07 for different trajectories over multiple horizons
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Figure C.23: Objective function values of mk08 for different trajectories over multiple horizons
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Figure C.24: Objective function values of mk09 for different trajectories over multiple horizons
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Figure C.25: Objective function values of mk10 for different trajectories over multiple horizons
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Figure C.26: Objective function values of mk11 for different trajectories over multiple horizons
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Figure C.27: Objective function values of mk12 for different trajectories over multiple horizons
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Figure C.28: Objective function values of mk13 for different trajectories over multiple horizons
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Figure C.29: Objective function values of mk14 for different trajectories over multiple horizons
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Figure C.30: Objective function values of mk15 for different trajectories over multiple horizons

Table C.7 breaks down the results according to the trajectory pursued during
the solution process (trade-off, makespan, energy cost or emissions). With respect
to Section 6.2, Table C.7 shows the minimum, average, and maximum values of the
objective function for the makespan, energy cost, and emissions.
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Table C.7: Results for different trajectories

Instance Makespan Energy Cost Emissions Trade-off
Min Avg Max Min Avg Max Min Avg Max Min Avg Max

Makespan (time steps)
mk01 41.00 42.20 43.00 156.00 162.50 167.00 143.00 159.50 173.00 57.00 63.60 69.00
mk02 28.00 29.90 31.00 153.00 162.60 175.00 144.00 153.00 160.00 34.00 40.70 48.00
mk03 204.00 204.00 204.00 365.00 398.30 416.00 372.00 400.50 421.00 234.00 251.90 273.00
mk04 65.00 66.50 69.00 171.00 181.50 203.00 170.00 179.50 191.00 85.00 96.70 108.00
mk05 174.00 177.20 182.00 337.00 357.80 374.00 355.00 369.80 384.00 203.00 220.80 241.00
mk06 73.00 77.40 82.00 185.00 194.70 210.00 178.00 192.20 213.00 108.00 121.60 135.00
mk07 144.00 148.00 156.00 222.00 233.30 239.00 229.00 233.30 239.00 191.00 206.70 229.00
mk08 523.00 523.50 526.00 742.00 808.80 857.00 789.00 828.30 868.00 577.00 604.40 647.00
mk09 319.00 329.50 343.00 707.00 758.00 787.00 740.00 758.10 799.00 357.00 392.00 431.00
mk10 237.00 245.50 254.00 416.00 445.10 461.00 422.00 449.20 469.00 317.00 345.70 366.00
mk11 616.00 624.70 633.00 824.00 879.00 922.00 846.00 902.90 941.00 695.00 715.10 745.00
mk12 524.00 527.60 540.00 784.00 839.70 886.00 806.00 850.40 919.00 615.00 658.50 715.00
mk13 436.00 444.80 450.00 815.00 858.10 908.00 816.00 865.90 910.00 547.00 591.80 638.00
mk14 694.00 694.00 694.00 908.00 921.70 941.00 914.00 930.90 951.00 758.00 796.00 822.00
mk15 390.00 397.80 410.00 470.00 476.40 479.00 470.00 475.50 479.00 420.00 451.20 476.00
Energy cost (te)
mk01 1.42 1.51 1.65 -0.61 -0.45 -0.32 0.03 0.17 0.56 1.07 1.45 1.65
mk02 1.58 1.67 1.80 -0.80 -0.49 -0.09 0.01 0.05 0.10 1.34 1.50 1.68
mk03 4.20 4.40 4.56 -0.48 0.20 0.65 0.40 1.12 2.03 4.42 5.12 5.77
mk04 3.49 3.67 3.98 -0.49 -0.04 0.65 0.30 0.67 1.21 3.07 3.87 4.53
mk05 3.03 3.19 3.44 -0.33 0.34 0.82 0.21 0.57 0.75 2.94 3.39 3.59
mk06 3.80 4.52 4.85 -0.84 -0.51 0.22 0.26 0.66 0.99 2.88 3.92 4.76
mk07 4.00 5.19 5.88 1.34 2.07 3.32 1.84 2.69 3.09 2.63 3.42 4.10
mk08 5.30 5.72 6.74 0.60 2.59 4.21 1.48 2.68 3.48 5.49 6.14 6.86
mk09 7.61 8.44 9.01 0.16 1.63 3.05 1.68 2.53 3.49 6.60 7.51 7.90
mk10 12.88 13.75 14.44 3.96 5.42 6.66 5.16 6.36 7.24 7.02 9.66 12.41
mk11 5.03 5.42 5.70 3.01 3.76 5.21 2.91 4.13 4.89 4.30 5.06 5.85
mk12 7.70 8.75 9.16 2.70 4.45 5.89 3.35 4.65 5.55 5.67 7.49 9.13
mk13 13.19 13.82 14.33 3.28 5.09 6.26 4.35 5.25 6.10 8.45 10.78 12.21
mk14 9.49 10.08 10.51 5.69 6.66 7.86 7.15 8.29 9.14 9.00 10.50 11.54
mk15 26.45 27.45 28.58 21.10 22.81 24.94 22.61 23.55 25.13 24.38 25.37 26.94
Emissions (tCO2eq)
mk01 9.28 9.70 10.44 3.50 3.95 4.35 1.47 2.21 4.21 7.94 9.79 11.03
mk02 9.54 9.94 10.55 3.23 4.05 4.79 1.46 1.74 1.95 8.63 9.47 10.29
mk03 26.97 28.01 28.96 11.55 14.11 16.87 5.66 8.93 12.54 29.54 32.56 35.96
mk04 21.57 22.66 24.19 7.49 8.96 11.02 3.99 5.52 7.92 20.48 24.33 27.42
mk05 20.44 21.38 22.68 7.56 9.61 12.51 3.55 5.02 5.63 19.58 21.80 22.94
mk06 24.51 27.58 29.16 9.18 11.08 13.44 3.80 6.12 7.77 19.35 25.35 29.98
mk07 29.99 35.71 39.33 20.93 24.52 30.41 12.97 17.88 20.15 27.25 30.20 32.47
mk08 35.42 37.16 41.19 17.84 24.75 31.48 11.88 16.66 19.69 35.89 40.05 43.44
mk09 45.71 49.51 51.92 19.20 21.67 25.20 12.52 15.88 20.09 41.58 45.64 47.64
mk10 72.46 77.52 80.93 42.37 46.92 52.86 32.99 37.42 41.29 51.79 63.30 74.97
mk11 38.58 39.69 40.76 28.53 32.08 37.70 20.68 25.94 29.82 35.77 38.12 41.48
mk12 50.75 53.74 55.78 30.35 36.14 42.60 22.78 28.72 34.29 41.62 49.37 56.72
mk13 75.70 78.72 81.39 36.13 42.26 46.65 28.38 31.86 35.57 55.39 65.64 72.58
mk14 74.67 76.91 79.29 57.63 61.40 63.16 48.81 52.10 55.39 69.04 72.74 75.19
mk15 158.49 162.74 167.00 135.84 144.25 154.04 125.06 131.34 141.20 147.94 154.78 164.17
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